Clustering, Windows Server 2012

SQL Server with Cluster Shared volumes (CSV) – Part 2

In the previous part of this series, we have seen what a cluster shared volume is and what are the advantages and other considerations to keep in mind when deploying CSVs for SQL Server workloads. In this article, I will walk though actual installation of a failover cluster Instance leveraging CSVs.

To begin with, I will walk you through my cluster setup from 20,000 foot view. I created two brand new VMs running windows server 2012 R2 and renamed them accordingly. Nothing special w.r.t disk drives at this point, Just basic VMs with a system drive(C$).

I also created 2 virtual networks in my VMWare workstation which I will be using for configuring my Public and private NICs on my nodes.

On my first node: is the IPv4 address of my DNS server and below are my NIC settings.

Once IP address has been configured, below is how I joined my node to domain (sqltrek.local in my case).

Further reading: Deploy SQL with CSVs – Part 2

Clustering, HADR

SQL Server with Cluster Shared volumes (CSV) – Part 1

Microsoft SQL Server provides us with a wide variety of solutions to architect High availability (HA) and Disaster Recovery (DR) solutions for mission-critical workloads. In this article, let’s just focus on HA, specifically Failover Clustering. Failover clustering is probably the most mature, robust and stable high availability solution which Windows Server Operating system offers. It’s been there around for few decades now and did evolve over time along with SQL Server. In this article Let’s see a hidden feature of windows server failover cluster which helps in making our already highly available SQL Server Failover clustered instances even more highly available. The new feature which we are going to talk about is Cluster Shared Volumes, AKA CSVs. Considering windows server 2019 is around the corner, I say CSVs are not a new concept in clustering, it’s been there for almost a decade now. Microsoft introduced CSVs in windows server 2008R2, but at that time SQL Server was not supported on CSVs. Well, CSVs were originally designed for Hyper-V workloads and later on enhanced for File servers and eventually landed into SQL Server beginning version 2014.

Fair enough, but why should we care about Cluster shared volumes?

Well, the idea behind introducing CSVs is to provide truly shared disks to a failover cluster which are available to all the nodes for reading and write operations. Let’s talk about a traditional Failover clustered Instance setup for a moment. During Failover, to bring SQL Server resource online, the drives should be unmounted on the previous owner and remounted on the node which will act as the primary after failover. Should your IO subsystem become bottleneck for whatever reason, Unmounting and mounting process takes longer time thus impacting the availability of the system. Whereas with CSVs, there is no unmounting and mounting of disks since they are already made available for reading and write operations across all the nodes. In other words, it reduces downtime since SQL Server resource is no longer dependent on disks to come online. Let’s talk about one more scenario where CSVs outperform traditional shared storage. Let’s assume disk(s) loses connectivity from the node which is currently running SQL Server in middle of the day, under these circumstances the cluster can leverage another path (s) available to the shared disk without having to failover the resource group to another node. This will save us from potential unplanned downtime during business hours.

How CSVs work?

Further reading : Deploy SQL Server with CSVs